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Eastern oysters in the northern Gulf of Mexico are routinely infected with the protistan
parasite Perkinsus marinus, the cause of the disease commonly known as dermo.
Recent experimental challenges among Atlantic coast populations have identified
both resistant and susceptible genotypes using comparative transcriptomics. While
controlled experimental challenges are essential first assessments, expanding this
analysis to field reared individuals provides an opportunity to identify key genomic
signatures of infection that appear both in the laboratory and in the field. In this study
we combined reduced representation bisulfite sequencing with 3′ RNA sequencing
(Tag-seq) to describe two molecular phenotypes associated with infection in oysters
outplanted at a common garden field site. These combined approaches allowed us
to examine changes in DNA methylation and gene expression for a large number of
individuals (n = 40) that developed infections during the course of a common garden
outplant experiment. Our epigenetic analysis of DNA methylation identified significant
changes in gene body methylation associated with increasing infection intensity, across
genes associated with immune responses. There was a smaller transcriptomic response
to increasing infection intensities with 32 genes showing differential expression; however,
only 40% of these genes were found to also be differentially methylated. While there was
no clear pattern between direction of differential methylation and gene expression, there
was a significant effect of percent methylation on gene-by-gene expression levels and
the coefficient of variation in gene body methylation between treatments. These results
show that in C. virginica, heavily methylated genes have high levels of gene expression
with low levels of variation. Comparing our differential expression results with previously
published experimental P. marinus challenges identified overlapping expression patterns
for genes associated with C1q-domain-containing and V-type proton ATPase proteins.
Through our comparative transcriptomic approach using field reared individuals and
co-expression network analysis we have also been able to identify a network of genes
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that change in expression in response to infection. These combined analyses provide
evidence for a conserved response to P. marinus infections across infection intensities
and suggest that DNA methylation may not be a reliable predictor of differential gene
expression in long-term infections.

Keywords: DNA methylation, TagSeq, eastern oyster Crassostrea virginica, Perkinsus marinus disease,
transcriptomics, weighted gene co-expression network analyses

INTRODUCTION

The relationship between tissue-specific DNA methylation and
gene expression is an area of interest to a broad research
community as these two molecular phenotypes have been
proposed as mechanisms of environmental responsiveness and
used as biomarkers to describe interactions between organisms
and their environment (Roberts and Gavery, 2012; Dixon et al.,
2014; Putnam et al., 2016; Hawes et al., 2018; Schmid et al., 2018;
Eirin-Lopez and Putnam, 2019; Rubi et al., 2019). The utility of
these metrics relies heavily on a well-developed understanding
of how a stimulus will modulate either gene expression or
DNA methylation levels, and how methylation could in turn
modulate gene expression. As a result, the last decade has
seen a dramatic increase in the number of studies using whole
transcriptome sequencing to describe how non-model species
modify their transcriptomes in response to developmental cues,
diseases, and shifts in the abiotic environment (Alvarez et al.,
2015; De Wit et al., 2018; Jones et al., 2019; Proestou and Sullivan,
2020). Interest in the functional role of DNA methylation has
also grown in recent years due to its potential contributions
to transgenerational plasticity (Kappeler and Meaney, 2010;
Herman and Sultan, 2016; Gavery and Roberts, 2017; Ryu et al.,
2018). These studies together have further fueled interest in
the mechanisms that control transcriptome variation, with the
majority of studies focusing on either DNA methylation or
chromatin modifications (Clark et al., 2018; Weinhold, 2018;
Eirin-Lopez and Putnam, 2019).

Oysters in the genus Crassostrea are both an ecologically and
environmentally important keystone species distributed across
broad geographic ranges. These widely dispersed species inhabit
highly variable environments leading to species with a high
degree of phenotypic plasticity (Li et al., 2017). As such, oysters
are an ideal organism for exploring how DNA methylation
influences phenotypic plasticity. Recent research on this genus
has focused on describing the degree to which gene expression
contributes to phenotype or how DNA methylation directs gene
expression levels. These studies have found strong evidence
that environmental variation and/or disease state can have a
predictable influence on gene expression (Yan et al., 2017; Jones
et al., 2019; Proestou and Sullivan, 2020). In a similar manner,
a growing body of literature has provided ample evidence
that DNA methylation can shape the transcriptomic phenotype
(Rivière et al., 2013; Olson and Roberts, 2014; Song et al.,
2017). In the Pacific oyster (C. gigas) high levels of methylation
in gene bodies are associated with elevated expression, while
lowly methylated genes showed higher levels of transcriptomic
plasticity (Gavery and Roberts, 2013; Olson and Roberts, 2014).

In the eastern oyster (C. virginica) DNA methylation is
more divergent between populations than single nucleotide
polymorphism-based estimates of divergence, suggesting a non-
genetic (i.e., environmental) influence on DNA methylation
(Johnson and Kelly, 2020). Together, these studies provide
some evidence of an association between DNA methylation
and transcriptomic expression levels; however, the functional
consequences of changes in DNA methylation are still largely
unknown in bivalves.

In a similar manner, shifts in gene expression are often
essential for responding to infectious diseases in bivalves (Renault
et al., 2011; Moreira et al., 2012; Rosani et al., 2015). Previous
research investigating the transcriptomic responses of C. virginica
challenged with Perkinsus marinus found significant changes in
the regulation of genes involved in immune defense (Tanguy
et al., 2004; Wang et al., 2010). Although previous studies have
shown that C. virginica regulates gene expression in response
to P. marinus, a major gap remains regarding whether there
is a population-specific transcriptomic response to dermo in
the northern Gulf of Mexico. Previous research has shown that
oyster populations vary in mortality rates in response to dermo,
though the molecular basis for this is still unclear (Casas et al.,
2017; Leonhardt et al., 2017; La Peyre et al., 2019). A recent
study looking at the effect of P. marinus infection on the global
gene expression pattern of resistant vs susceptible C. virginica
families found strong acute responses to infection with over
3,000 differentially expressed transcripts with resistant oysters
upregulating genes involved with peptidase inhibitor activity
and regulation of proteolysis (Proestou and Sullivan, 2020).
This response diminished over 28 days after which only 21
differentially expressed genes were observed within the dermo
resistant family while the dermo susceptible family differentially
expressed over 2,000 genes. These large differences in response to
infection in controlled settings provide a base to begin exploring
how responses to infections differ in the field.

To this end we present a comparison of 40 individuals with
differing levels of P. marinus infections following 14 months
of outplant at a common-garden field site. We investigated
both transcriptomic and epigenetic signatures of these infections
to better understand how light vs heavy intensity infections
influence molecular phenotypes. Using a combination of reduced
representation bisulfite sequencing and 3′ RNA sequencing
(TAGseq) we are able to describe two molecular responses to
infection intensity in a common garden study. These results
also allow us to compare the molecular phenotype of farm-
raised oysters with P. marinus infections to recent results from
a controlled infection (Proestou and Sullivan, 2020). Through
a common garden outplant of hatchery reared juveniles we

Frontiers in Marine Science | www.frontiersin.org 2 August 2020 | Volume 7 | Article 598

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00598 August 7, 2020 Time: 19:4 # 3

Johnson et al. Oyster Transcriptomics, Methylation, and Disease

were able to compare changes in DNA methylation and gene
expression for a large number of individuals (n = 40) that were
identified as infected with P. marinus, but at varying intensities.
This allowed us to use a weighted gene co-expression network
analysis to identify a collection of genes positively correlated with
infection. Furthermore, we were able to explore how changes
in DNA methylation related to changes in gene expression on a
gene-by-gene basis.

MATERIALS AND METHODS

Oysters
In May 2016, adult oysters (C. virginica) were collected by
dredging from each of two estuaries; Vermilion Bay, LA (29◦
35′ 7.26′′ N, 91◦ 0\2′ 33.92′′ W) and Calcasieu Lake, LA (29◦
50′ 58.02′′ N, 93◦ 17′ 1.32′′ W). These oysters were transported
to the Louisiana Department of Wildlife and Fisheries Michael
C. Voisin Oyster Hatchery in Grand Isle, LA (29◦ 14′ 20.3′′ N,
90◦ 00′ 11.2′′ W) and placed into off-bottom mesh cages for
common garden acclimation. In October 2016, after 5 months of
acclimation, oysters were spawned at the MCV oyster hatchery.
Oyster spat were reared in an upwelling system, individually
tagged, and outplanted in one of three adjustable long-line
mesh bags at the Grand Isle Hatchery farm on February 20,
2017. Oysters within each bag were monitored for mortality
and cleaned of epibionts approximately every 3 months over a
14-month period.

Sample Collection
On April 24, 2018, after 14 months at the Grand Isle outplant
site, 50 individuals were haphazardly sampled. Shell height of
each individual was measured from shell umbo to distal edge
using a digital caliper (ABS Coolant Proof Calipers, Mituyoto
Corporation, Japan). Approximately 1 cm2 piece of gill tissue was
sampled in the field from each individual and preserved with
either Invitrogen RNAlater (gene expression) or 95% ethanol
(DNA methylation). The remaining whole animal was placed in
a pre-weighed 50 ml test tube in order to measure wet meat
weight. Infection intensities were enumerated by adding 0.22 µm
filtered seawater (20 ppt) at a concentration of ∼0.4 g ml−1 and
homogenizing the oyster meat in each 50 ml test tube. One ml
of the oyster homogenate was used to measure the number of
P. marinus hypnospores g−1 oyster wet tissue using the whole-
oyster procedure (La Peyre et al., 2018). Oyster infections were
classified as either very-light (≤1,000 parasites g−1 wet tissue),
light (1,001–10,000 parasites g−1 wet tissue), moderate (10,001–
100,000 parasites g−1 wet tissue) or moderate-heavy (>100,000
parasites g−1 wet tissue). Of the 50 individuals sampled we
sequenced 40 individuals that spanned the four different infection
categories (Table 1).

DNA Methylation Analysis
DNA was extracted using the OMEGA E.Z.N.A. Tissue DNA
Kit (D3396-01; Omega bio-tek) with a 2 min RNase A digestion
to remove co-purified RNA. DNA purity was assessed based on
260/280 and 260/230 ratios using a nanodrop spectrophotometer

(ND1000; Thermofisher Scientific). Presence of high molecular
weight DNA was confirmed using a 1.5% agarose gel, and
DNA concentration was verified using a Qubit 3.0 Fluorometric
dsDNA BR assay kit (Q32850; Life Technologies). The epiGBS
library preparation followed previously published methods (Van
Gurp et al., 2016; Johnson and Kelly, 2020). Briefly, a total of
500 ng of purified genomic DNA was double digested using
the two frequent cutter enzymes AseI and NsiI (NEB-R0127L
and NEB-R0526L; Van Gurp 2016). Digested DNA was ligated
to custom y-yoked methylated sequencing adapters using a T4
DNA ligase (B9000S; New England Biolabs) with additional
rATP to ensure ligation of custom adapters (Glenn et al., 2019).
The adapter ligated DNA was bisulfite converted in a 96 well
plate using the Zymo Research EZ DNA Methylation-Lightning
kit (D5031; Zymo Research) with a 15 min L-desulphonation
step. This bisulfite converted DNA was tagged and amplified
with Illumina adapters using 16 cycles of PCR. Amplified
libraries were size selected to 300–600 base-pairs (bp) using
the Zymo Research Select-A-Size DNA clean & concentrator
(D4080; Zymo Research). Size selection was confirmed using
the Agilent Bioanalyzer DNA high sensitivity chip (5067-4626;
Agilent Technologies). Libraries were pooled and sequenced by
NovoGene Inc. (R) with a 10% PhiX spike-in on a full flow cell of
the Illumina HiseqX with 100 bp paired-end reads.

The epiGBS sequencing reads were adapter trimmed and
base pairs with a phred score less than 30 were removed using
Trimmomatic (version 0.39) (Bolger et al., 2014). Trimmed reads
were mapped to the reference genome (NCBI GCF_002022765.2)
and CpG methylation was called using the software package
bismark (v0.19.0) (Krueger and Andrews, 2011). The bismark
commands used in the mapping allowed for 1 mismatch in
a seed alignment of 10 with a minimum alignment score
setting of −0.6 (–score_min L, 0, −0.6). These settings having
previously been used in this species and were selected to account
for genomic variations between C. virginica collected from
the northern Gulf of Mexico (nGOM, this study) and the
disease-resistant inbred line from the United States East Coast
used for the construction of the reference genome (Gómez-
Chiarri et al., 2015; Johnson and Kelly, 2020). CpG methylation
was extracted from the non-deduplicated mapped reads
using the bismark command bismark_methylation_extractor
with the following commands; –ignore_r2 2, –bedGraph, –
zero_based, –no_overlap, –cytosine_report, and –report.
Differential methylation was conducted on CpG features using
the bismark coverage files with methylation across both strands
merged and analyzed using the R program MethylKit (v.1.2.4)
(Akalin et al., 2012). Methylated regions were identified using
a tiled window approach with a tile size of 1,000 bp (1 kb) and
a step size of 1 kb. The 1 kb regions were filtered using the
filterByCoverage command to require coverage greater than 10×
in at least 8 of the 20 individuals.

Pair-wise differential methylation was measured between
individuals with moderate or moderate-heavy (parasites g−1

>10,000, n = 15) and very-light (parasites g−1
≤1,000, n = 16)

infection intensities. For these analysis, one sample in the high
infection group was not included as a result of poor sequence
quality. Significantly differentially methylated regions (DMRs)
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TABLE 1 | Distribution of the number of individuals sequenced for each infection category, with both mean infections and range of infections for each category.

Infection
category

Infection intensity
(parasites g−1 wet tissue)

Number of
individuals

Median infection intensity
(parasites g−1 wet tissue)

Infection range (parasites
g−1 wet tissue)

Mean height
(mm)

Mean wet tissue
weight (g)

Very light ≤1,000 16 138 33–704 94.7 ± 7.8 17.56 ± 4.8

Light 1,001–10,000 8 4,128 1,402–9,474 103.8 ± 6.1 17.60 ± 4.1

Moderate 10,001–100,000 8 42,974 13,918–89,174 106.2 ± 10.3 20.51 ± 5.7

Moderate-heavy >100,001 8 616,623 194,516–3,049,972 103.3 ± 12.5 19.35 ± 6.0

Mean shell height and mean wet meat weight are also reported with standard deviations.

were identified based on a minimum percent methylation
difference between groups of 20% and an adjusted P-value (q-
value) less than or equal to 0.05 (Mathers et al., 2019). Functional
enrichment of methylation was assessed using two methods.
The first approach explored enrichment in methylation amongst
all samples tested using a Mann-Whitney U-test to identify
enriched ontologies between highly and lowly methylated genes.
This test used mean methylation among all individuals for each
gene feature with at least a single 1 kb region overlapping
a gene’s promoter, gene body or downstream region; and,
calculated enrichment across each gene ontology (GO) category
(MF, Molecular Function; BP, Biological Process, and CC,
Cellular Component). The second approach tested for functional
enrichment between genes that showed differentially methylated
regions using a Fisher’s Exact test for each GO category. For both
analyses we used a background list consisted of all genes with GO
annotations for which DNA methylation was measured (n = 8,624
of genes passing filter with GO annotations).

TAGseq Analysis
Total RNA was extracted using a E.Z.N.A. R© Total RNA Kit I
(Omega BIO-TEK Inc., Norcross, GA, United States) following
the manufacturer’s instructions. The yield and quantity were
initially assessed using a NanoDrop 2000 spectrophotometer.
Total RNA extracted from the 40 individuals was sent to the
University of Texas at Austin’s Genomic Sequencing and Analysis
Facility where RNA quality control was confirmed using a 2100
Agilent Bioanalyzer on a Eukaryote Total RNA Nano chip and
libraries were produced using the 3′ poly-A-directed mRNA-
sequencing (TAGseq) method (Meyer et al., 2011). The resulting
40 libraries were sequenced on two lanes of an Illumina HiSeq
2500 platform, with 100 base pair single-end reads. Sequencing
reads were trimmed of adapter sequences using Trimmomatic
(version 0.39) (Bolger et al., 2014) and base pairs with quality
scores below 30 were removed. The trimmed reads were then
mapped to the published C. virginica reference genome (Gómez-
Chiarri et al., 2015) using the single pass option for STAR
RNA-seq aligner (version 2.6.0a) (Dobin et al., 2012). We used
the default of 10 allowed mismatches for filtering and allowed
for multi-mapping. After mapping, we used HTSeq (version
0.11.2) (Anders et al., 2015) to obtain the number of reads
mapped to each gene and allowed for multiple alignments
to be counted (–non-unique = all). The counts were sorted
by alignment position and based on gene features obtained
from the C. virginica genome assembly on NCBI (version
GCF_002022765.2).

Changes in gene expression associated with P. marinus
infection intensity were tested with two approaches. The first
approach assessed pairwise changes in gene expression between
individuals with moderate-heavy and very-light infection using
the package edgeR (version 3.24.2) (Robinson et al., 2010). For
this analysis genes with fewer than three counts per million
mapped reads across 50% (n = 20) of all samples were removed.
The remaining read counts were distributed across 17,439 gene
features and were normalized using the trimmed mean of
M-values (TMM) normalization method (Robinson and Oshlack,
2010). Broad changes in gene expression were first assessed using
a principal coordinate analysis (PCoA) conducted using the R
program vegan with Euclidean distances calculated from log2+ 1
transformed normalized counts obtained from the cpm()
function in edgeR. These log-transformed counts were also used
to test for any significant interactions between gene expression
and infection intensity interactions using a PERMANOVA with
1e6 permutations. Pairwise differential expression was measured
using the genewise negative binomial generalized linear model
implemented in the edgeR function glmFit and significantly
differentially expressed genes (DEGs) were identified based
on FDR rates calculated using benjamini-hochberg method
(Benjamini and Hochberg, 1995). Comparisons were made
between the lowest infection group (very-light, n = 16) and a
combination of the two highest infection groups (moderate and
moderate-high, n = 16). Functional enrichment of differential
gene expression for each comparison was tested using a rank-
based gene ontology analysis with adaptive clustering that uses a
Mann-Whitney U-Test to identify enriched ontologies (Wright
et al., 2015). For these tests, we tested for enrichment using
the log-transformed and signed p-value for each gene in each
comparison contrasted using all of the genes that passed the
expression filtering for the analysis and had annotated GO
terms (n = 11,057).

The second approach used to assess changes in gene
expression associated with P. marinus infection intensity was
a Weighted Gene Network Analysis (WGCNA). For this
component of the analysis we restricted the number of genes
to remove lowly expressed features retaining only samples with
greater than five counts per million in 75% of all samples (n = 30).
This additional filtering was included to remove genes with low
counts prior to network analysis. WGCNA was run using the
11,998 genes that passed this filter, a soft-threshold of 12, a
minimum module size of 30, a signed adjacency matrix, and was
correlated to shell height, meat weight, and infection intensity
(a continuous variable of counts/g). Functional enrichment was
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assessed across 7,398 of the 11,998 genes that had annotated GO
terms for the five modules that showed significant correlation
with any of the five traits using the GO_MWU methods for
WGCNA using eigengene-based module connectivity (kME)
as a continuous variable. This method calculates significant
enrichment across each gene ontology (GO) category (MF, BP,
and CC) for each module, and identifies functional categories
in the modules using the Fisher’s Exact test. These functional
categories were further tested for an association with higher kME
values using a within-module MWU test. The product of the
resulting p-values from the Fisher’s Exact and MWU test was then
used to calculate false discovery rates with ten permutations of
randomly shuffled significance measures among genes.

Methylation and Gene Expression
An important component of this study was the opportunity
to examine the interaction between DNA methylation and
transcript expression across many individuals. We tested the
relationship between percent methylation for moderate-heavy
infected individuals vs very-lightly infected individuals and
changes in gene expression, as measured by the pairwise
differential gene expression analysis. To do this, we summarized
each 1 kb region into three categories: 1 kb regions that were
located in (i) gene promoter regions (within 2 kb upstream of
the first exon), (ii) gene body regions (first exon to last exon),
or (iii) downstream regions (within 2 kb downstream of the
last exon). For all comparisons if multiple 1 kb regions were
present within the annotated feature (promoter, gene body, or
downstream region) the mean p-value, mean q-value, and mean
percent difference in methylation was calculated. For each of
these three gene regions we explored the association of mean
methylation with the log-transformed cpm expression data. For
these analyses cpm expression data was distributed into 10 deciles
using the decile function available in the R package StatMeasures
(v.1.0). Significance of the association between mean methylation
and expression level deciles was assessed using a Kruskal–Wallis
test along with a Dunn post hoc test and corrected for multiple
comparisons using the Benjamini-Hochberg method.

RESULTS

DNA Methylation
RRBS sequencing produced a total of 878 million reads with
an average of 21.4 million reads per sample. Trimming of these
reads led to an average of 18.1 million reads per sample, and
mapping resulted in an average of 84.6% of reads mapping to
the reference genome (range: 77.3–89.1%). Genome tiling in
methylkit distributed these reads across 43,085 1-kb regions with
a minimum count of 10 in a minimum of 9 individuals in either
of the 2 groups (very-light or moderate and moderate-heavy). Of
these, 10,741 regions were located along intergenic regions (i.e.,
greater than 2 kb from any gene feature). The remaining 32,344 1-
kb regions were distributed across 15,543 annotated gene features
with 13.1% (n = 2,364 genes) found within promoter regions (i.e.,
2 kb upstream of first exon), 71.3% (n = 12,781 genes) found
within gene bodies, and 15.6% (n = 2,791 genes) found within

2 kb downstream of a gene’s final exon. Functional enrichment
testing using the rank-based gene ontology analysis with adaptive
clustering among all 40 individuals based on mean methylation
identified enriched gene functions among both heavily- and
lightly methylated genes (relative to the genome-wide average)
in each of the three gene ontology categories (14 MF, 6 BP,
and 11 CC). We observed higher methylation of key molecular
processes such as RNA metabolism, chromosome organization,
and general protein binding. While lightly methylated genes
were associated with environmentally responsive categories such
as enzyme regulation, immune processes and oxidoreductase
activity (Table 2).

Our pair-wise assessments of differential methylation between
the moderately and moderate-heavily and lightly infected groups
identified 913 significantly differentially methylated 1-kb regions
(DMRs), distributed across 846 genes. Among these, 86 DMRs
(10.1%) were found within promoter regions, 666 DMRs (78.8%)
were found within gene bodies, and 66 DMRs (8%) were
found in downstream regions. Functional enrichment using a
Fisher’s Exact test for each region (i.e., promoter, gene body,
and downstream) did not identify any significant enrichment for
hyper/hypo-methylated genes or gene body regions. Examining
genes that showed the strongest change in methylation between
infection categories identified significant hypomethylation of a
uncharacterized long non-coding RNA (−58%), a complement
C1q tumor necrosis factor-related protein 4-like gene (−36.5%),
a heat shock 70 kDa protein 12A-like isoform (−29.25%), and
a caspase-8-like gene (−27.65%) in individuals with higher
levels of infection. Gene-body hypermethylation in more infected
individuals occurred in UPF0600 protein c5orf51 homolog
(+65.1%), two uncharacterized long non-coding RNAs (+52.2%;
+48.1%), an organic cation transporter protein (+44.9%), and an
ankyrin-2-like isoform (+44.9%).

Gene Expression
Transcriptome sequencing using TAGseq produced a total of
189 million reads, with 4.7 million reads per sample. Trimming
of those reads led to a final read count of 4.5 million per sample,
which is sufficient for this method (Meyer et al., 2011). Star
mapping resulted in 80.20% of reads mapping to the reference
genome (range: 75.7–83.1%). Filtering mapped reads based on
expression resulted in a total of 17,439 gene features with more
than 3 counts per million reads in 20 of the 40 samples. This
stringent level of filtering was chosen to avoid including too
many genes with low count totals. Principle coordinate analysis
revealed significant overlap with the three low-infection groups
with separation of these from the single high infection group
(Figure 1). The PERMANOVA testing expression ∼ infection
(parasites g−1 wet tissue wet) found a non-significant interaction
between infection and gene expression (p-value = 0.09).

Pairwise differential gene expression analysis identified
modest levels of differential gene expression between infection
intensities. Gene expression changes associated with moderate-
heavy vs very-light infections, identified 31 genes up-regulated
and 8 genes down-regulated in the moderate-heavy infected
individuals (Figure 2). A Mann-Whitney U-Test of the 11,057
genes in the analysis (regardless of DE status) was run
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TABLE 2 | Top results from Mann Whitney U-Test enriched gene ontology (GO) terms tested using percent methylation of gene body.

GO category GO term Go ID Percentage of reference Heavy/lightly methylated Adjusted P-value

MF Transferase activity GO:0016740 87.1% (378/434) Heavy 8.404156e-04

MF Protein binding GO:0005515; GO:0008092 94.7% (54/57) Heavy 8.906802e-03

MF Oxidoreductase activity GO:0016491 74.4 % (264/355) Lightly 7.742907e-09

MF Enzyme regulator activity GO:0030234; GO:0098772 65.8% (50/76) Lightly 8.906802e-03

BP Immune system process GO:0002376 67.9% (38/56) Lightly 2.501468e-05

BP Chromosome organization GO:0051276 95.5% (42/44) Heavy 1.508920e-02

BP RNA metabolic process GO:0016070 92.3% (48/52) Heavy 1.300211e-02

CC Cytoskeleton GO:0005856 96.5% (136/141) Heavy 2.475557e-04

CC Plasma membrane GO:0005886; GO:0016020 72.7% (109/150) Lightly 1.167721e-10

Percent of reference shows the number of genes identified as enriched when compared to the total number of genes for that GO term in the background reference list.

FIGURE 1 | Biplot of the first two principle components from principle coordinate analysis using the gene expression data.

using the log-transformed and signed p-values for genes that
passed filtering for the analysis and had annotated GO terms
(n = 11,057). This analysis identified 19 enriched categories
associated with infection intensity including G protein-coupled
receptor activity, ribonucleoprotein complex biogenesis, and
peptide metabolic process (Table 3). There were three genes
significantly differentially expressed (FDR < 0.05) that had
predicted enzyme annotations, these genes include a GTP-
binding protein GEM-like enzyme (logFC = −1.6; gene18819),
a gene coding for a hepatic-like arginase (logFC = + 0.7;
gene13511), and a gene coding for uncharacterized protein
LOC111128066 that has been functionally annotated as an
endonuclease (logFC = +1.5; gene13511). There were five
additional genes that were differentially expressed and have

previously been found to respond to infection in marine
invertebrates (de Lorgeril et al., 2005; Proestou and Sullivan,
2020). These included nijurin 1-like (logFC = +2.1;gene24478);
phytanoyl-CoA dioxygenase domain-containing protein 1-like
(logFC = +3.0; gene6975), C1q tumor necrosis factor protein
6-like (logFC = −2.6; gene30362), C1q tumor necrosis factor
protein protein 7-like (logFC = +2.6; gene10222), a GATA zinc
finger domain containing protein 14 (logFC = −6.0; gene 5837),
and a nuclear polyadenylated RNA-binding protein 3-like gene
(logFC =−3.2; gene5505).

WGCNA Results
The WGCNA analysis identified a total of 12 gene modules; of
these, only 1 module was significantly correlated with dermo
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FIGURE 2 | Heatmap and hierarchical clustering of the 39 differentially expressed transcripts between heavily and lightly infected individuals. Top color-coded bar
provides individual infection levels with: light blue = very-light infection, blue = light infection, pink = moderate infection, and red = moderate-heavy infection.

infection intensity (Figure 3A). Below we discuss the significance
of module pink as this module was the only one significantly
associated with infection.

Module Pink
Module Pink was comprised of 385 transcripts and was
significantly associated with increased intensities of dermo
infection. These genes showed a positive correlation between
dermo infection and expression levels with the highest infection
group showing the strongest association with the module
(Figure 3B). Of the 24 genes with the highest module
membership scores (KmE > 0.75), 2 have been identified in other
studies as being involved in immunity in oysters (Wang et al.,
2010; Li et al., 2017). In addition, module pink was found to
also contain isoform 1 of the ninjurin-1-like gene that was also
identified as differentially expressed in the pairwise comparison.
Functional enrichment of this module identified enrichment
of supramolecular fiber organization, intracellular, and cellular
carbohydrate metabolic process. Comparing the list of genes in
module Pink and genes identified as differentially expressed in
Proestou and Sullivan (2020) identified 16 genes in both datasets.
These genes included two isoforms of a multimerin-2-like gene, a

calmodulin-2/4-like gene, a HSP70 12A-like gene, and a proline-
rich transmembrane protein. This module was also found to have
significant GO enrichment for 8 MF terms, 13 BP terms, and 8
CC terms (Figure 3C).

Changes in DNA Methylation and Gene
Expression
We examined the relationship between gene expression and
methylation for gene promoters (2 kb up-stream of first exon),
gene bodies, downstream regions (2 kb down stream of last
exon), and all intragenic regions combined (e.g., region covered
by promoter, gene body, and downstream region). After breaking
the expression into deciles, we used a Kruskal–Wallis test to
compare mean methylation of each decile. This analysis identified
a near-significant association between increasing expression and
increased promoter methylation (p-value = 0.065), a significant
positive interaction association between expression and gene
body methylation (p-value < 2.2e−16; Figure 4A), and no
interaction association between expression and downstream
methylation (p-value = 0.11). We also explored the relationship
between the mean methylation and the coefficient of gene
expression variation for each gene calculated across all samples.
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TABLE 3 | Top enriched GO terms for each GO from genes that were differentially expressed between the moderate-heavy and very-light infection intensities.

GO category GO term GO ID Percentage of reference Up/down-regulated Adjusted P-value

MF Structural molecule activity GO:0005198 39.41 Down 4.30E-08

MF Structural constituent of ribosome GO:0003735 39.71 Down 1.20E-07

MF G protein-coupled receptor activity GO:0004930 39.25 Up 0.012

BP Macromolecule biosynthetic
process

GO:0034645; GO:0009059 40.61 Down 7.07E-08

BP Peptide metabolic process GO:0006518 40.22 Down 1.02E-06

BP Ribonucleoprotein complex
biogenesis

GO:0006412;GO:0043043;
GO:0043604;

GO:0042254;GO:0022613;
GO:0044085

38.54 Down 6.32E-06

BP Cellular component organization or
biogenesis

GO:0071840 38.83 Down 0.0042

CC Ribonucleoprotein complex GO:1990904 38.61 Down 4.17E-06

CC Intracellular
non-membrane-bounded organelle

GO:0043232; GO:0043228 37.59 Down 6.92E-05

CC Ribosome GO:0005840 38.32 Down 8.21E-05

All but one ontology was found to be enriched among downregulated transcripts in the moderate-heavily infected individuals. Percent of reference shows the number of
genes identified as enriched when compared to the total number of genes for that GO term in the background reference list.

This analysis identified a significant relationship between
decreasing methylation and increasing variation in gene
expression (p-value < 2.2e−16; Figure 4B). However, there
was only significant overlap between 2 DMRs and 2 DEGs
and a Fisher’s Exact test revealed no significant overlap
between differential expression and differential methylation (p-
value > 0.05).

DISCUSSION

Our study described how P. marinus infection intensities
influence DNA methylation and gene expression in the
eastern oyster C. virginica. Through a combination of reduced
representation DNA methylation sequencing and 3′-RNA
sequencing (TAGseq) we identified significant changes in DNA
methylation and subtle changes in gene expression that support
previous findings of transcriptomic responses to infection and
confirms the relationship between percent DNA methylation
and the magnitude and variation in gene expression. The ability
to assess these changes across multiple individuals (n = 40)
strengthened these observations and encourages the use of
gene body percent methylation as a proxy for expression and
reinforces a potential role for plasticity. However, this study
did not find compelling evidence for a relationship between
differential methylation and differential expression. This lack
of overlap suggests that the majority of changes in DNA
methylation in response to infection might occur at any level
of infection (i.e., all individuals are exhibiting abroad infection
methylome); or, that these changes in DNA methylation are only
necessary for acute responses that gradually return to either a
seasonally or environmentally responsive methylation pattern.
The lack of evidence for this direct connection may derive
from the limited knowledge of when infection was initiated, and
mechanisms governing changes to gene body methylation. These
data suggest much of the observed variation in methylation does

not reliably predict the direction of differential gene expression.
This observation however, may also be a reflection of the TAGseq
approach that is unable to identify changes in splice variant
expression. It is therefore quite possible that the changes in DNA
methylation are not associated with changes in expression at the
gene level, but these changes could be influencing expression at
the isoform level.

Changes in DNA Methylation in
Response to P. marinus Infection
When we then look at the ontologies enriched in the genes
that were differentially methylated between the moderate-heavy
vs very-light infection categories, we see the regions that
were hypomethylated in more heavily infected individuals were
enriched for immune response genes, oxidative stress genes,
and enzyme regulator activity. The hypomethylation of these
regions may increase the plasticity of these genes given that
lower methylation was also associated with greater variability
in expression in our genome-wide analysis. That this occurs
as a function of infection provides some evidence that the
plasticity of these genes is being promoted. In contrast, regions
hypermethylated in infected individuals were enriched for
broad organizational categories associated with cellular structure
and replication. If hypermethylation leads to canalization of
expression, then it is possible that the increase in percent
methylation of the gene bodies reinforces the stability of
expression among these genes that may otherwise be altered
by the activation of immune responses. The hypomethylation
in heavily infected individuals of genes involved in apoptosis
(caspase-8), pathogen clearance (C1q tumor necrosis factor-
related protein 4), and molecular chaperones (HSP 70 12A-
like), suggests that moderate-heavy infections may be promoting
higher plasticity of immune response genes (de Lorgeril et al.,
2011; Wang et al., 2018). These potential roles are still largely
based on the hypothesis that large changes in DNA methylation
will drive phenotypic responses. As this still remains untested in
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FIGURE 3 | (A) Weighted Gene Correlated Network Analysis, showing significant relationships between module eigengenes (rows) and oyster traits (columns) in
which the color scale (red-blue) represents the strength of the correlation (1 to −1). Only modules with significant correlations to one of the traits are listed. (B) Mean
eigengene expression levels for genes in module pink across the four infection categories, showing increase expression of module pink among the moderate-heavy
infected individuals. (C) Enriched gene ontology terms for genes in module pink. Percent of reference shows the number of genes identified as enriched when
compared to the total number of genes for that GO term in the background reference list.

bivalves, the community would greatly benefit from controlled
studies investigating changes in DNA methylation across time in
the same individuals.

Changes in Gene Expression in
Response to P. marinus Infection
Intensity
Differential gene expression analysis identified only 39 genes
that showed differential expression between the moderate-
heavy (>100,000 parasites g−1) and very-light infected (≤1,000
parasites g−1) individuals (Figure 2). This low level of differential
gene expression is comparable to the dampened response
(21 genes DEG) observed in a dermo resistant family when
measured 28-days post-exposure in a controlled experiment
(Proestou and Sullivan, 2020). The genes that were differentially
expressed in both studies (day 28; Proestou and Sullivan, 2020)
included 2 forms of the complement C1q tumor necrosis factor
(protein 6-like and protein 7-like) and a nuclear polyadenylated

RNA-binding protein 3-like. The fact that these two datasets
provide similar findings of a small number of genes being
differentially expressed suggests two major takeaways; (1) that the
individuals observed in this study were likely suffering from long-
term infections of P. marinus; and, (2) that the shared differential
expression of genes associated with tumor necrosis factors
(complement system C1q) means these genes in particular are
good candidates for further investigation as potential markers of
disease resistance. Assuming that the individuals were suffering
from long-term infections is consistent with other observed
infection rates at this out-plant site (La Peyre et al., 2018). For
the genes identified by both our study and the previous controlled
exposure (complement C1q tumor necrosis factor-related protein
7-like and multimerin-2-like) we see an approximate sixfold
increase in expression between the moderate-heavy and very-
light infection categories. The role of these genes in immune
responses is further supported by recent assessments of the
functional role of these gene families in bivalve innate immunity
(Gerdol et al., 2019). We also observed two versions of a ninjurin
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FIGURE 4 | Violin plots of interaction between gene body methylation and gene expression for 5,295 genes with both gene body methylation and expression data.
Panel (A) plots mean methylation vs normalized counts per million (CPM) expression levels broken into 10 equal sized deciles, and panel (B) plots mean methylation
vs the coefficient of variation (CV) in expression also broken into 10 equal sized deciles. Letters represent significant differences in mean methylation between deciles
calculated separately for CPM and CV of expression.

1-like gene that were both up-regulated in the moderate-heavy
infected individuals. Ninjurin-like genes have been found to
be upregulated in Pacific Blue Shrimp (Litopenaeus stylirostris)
that survive infection with Vibrio penaeicidia (de Lorgeril et al.,
2005). We also found strong upregulation of two forms of a
phytanoyl-CoA dioxygenase domain-containing protein 1-like
that is putatively involved in peroxisomal lipid metabolism, a
potential signal of a prolonged immune response in Manila
clams (Venerupis philippinarum) responding to Perkinsus olseni
(Romero et al., 2015). Together, these differential expression
data highlight potential gene targets for future selective breeding
programs aimed at increasing disease resistance.

WGCNA Module Pink Shows Responses
to P. marinus Infection Intensity
WGCNA identified 1 module that was significantly correlated
with dermo infection (module pink). Comparing the genes in
module pink with the results from Proestou and Sullivan (2020)
found 18 genes that were identified as DE after 28 days of
infection in the dermo susceptible group and 3 genes identified
as DE after 28 days in the dermo resistant group in their
study. Of these genes the multimerin-2-like gene appears to
be associated with angiogenesis and tumor formation (Khan
et al., 2017). The positive association of infection of this
gene within module Pink may suggest a role of angiogenesis
in healing tissues degraded by P. marinus secreted proteases
(La Peyre et al., 1995). In addition, multimerin-2-like genes
have been proposed to have similar domains to complement
component C1q genes (Gerdol et al., 2019) that were significantly

differentially expressed in the above pairwise analysis of gene
expression. In addition, two genes within this module, Thymosin
beta-4 and kelch-like protein, have been associated with immune
defense against pathogens, Thymosin beta-4 is also involved
in antibacterial activity in C. gigas (Nam et al., 2015) and
was found to facilitate the clearance of Vibrio alginolyticus
in C. hongkongensi (Li et al., 2017). Kelch-like proteins have
also been shown to be differentially regulated in C. virginica
when challenged with dermo (Wang et al., 2010). Our results
show that both of these genes are up-regulated as P. marinus
infection intensity increases. These findings suggest a potential
role for both genes in the immune response of C. virginica
infected with dermo. However, further studies are needed to
clarify the role these genes play in defending against dermo
infection in oysters. This overlap between groups further
supports the module pink as a gene network involved in
immune responses and provides additional gene targets for better
understanding the variability in susceptibility to P. marinus
across oyster families. These results also further support the
use of weighted gene co-expression network analysis for
exploring genomic patterns of expression for disease resistance
in marine invertebrates.

Differential Methylation and Differential
Expression
Global levels of DNA methylation across gene features revealed
some unexpected associations, with limited support for a role
of methylation among promoter and downstream regions on
gene expression levels. Previous research in the Pacific oyster has
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found evidence for a putative role of promoter methylation in
regulating gene expression during development (Rivière et al.,
2013; Rivière, 2014). In our study, we tested this directly
and found a nearly significant association (p-value = 0.065)
between gene expression and mean promoter methylation. This
lack of significant association is surprising, and it is possible
that these differences in observations maybe associated with
sampling during development (Rivière et al., 2013) or that only
some genes are influenced by promoter methylation leading
to a nearly significant result. Other more recent studies have
reported that methylation increases at the start of the gene
body and not upstream in promoter regions (Song et al.,
2017). Rather, gene body methylation showed a strong positive
correlation with gene expression (Figure 4), a finding that has
been previously reported in the Pacific oyster (Gavery and
Roberts, 2013; Olson and Roberts, 2014). In our study we found
that genes with higher mean methylation have higher overall
expression and a lower coefficient of variation of expression.
When comparing mean methylation with gene expression, we
found that there were four categories (Figure 4A) of mean
methylation associated with increasing gene expression, but,
eight categories (Figure 4B) of mean methylation associated
with increasing variation in expression. This suggests that mean
methylation is a better predictor of gene variation than it is of
the magnitude of gene expression. These results align well with
previous research in Pacific oyster where it has been proposed
that higher levels of gene body methylation are associated with
constitutively expressed genes while lower levels of gene body
methylation are associated with “environmentally responsive”
gene categories (Roberts and Gavery, 2012; Song et al., 2017).
As such, it is plausible that genes showing a decrease in gene
body methylation (hypomethylated) are modified in a manner
that may lead to an increase in plasticity of that gene. This
potential increase in plasticity will require additional studies,
ideally consisting of time-course observations of a small number
of individuals in order to determine if an environmentally
induced change in methylation will lead to future changes in the
plasticity of that gene. In addition, future studies should further
investigate the role of differential methylation on alternative
splicing events. Regardless, these data suggest a relatively minor
role of differential DNA methylation on observed differences
in gene expression among individuals experiencing chronic
exposure to infections.

CONCLUSION

This study sought to understand how chronic exposure to
sub-lethal infections with the protistan parasite P. marinus
influenced DNA methylation and gene expression in eastern
oysters. Our results have confirmed a relationship between DNA
methylation and gene expression such that lower levels of DNA
methylation are found among genes with higher variations in
expression, while highly methylated genes are found to have
higher but less variable constitutive levels of expression. Genes
with low gene body methylation included those involved in
immune system process and enzyme regulator activity. Gene

expression analyses found a limited response to infection, similar
to the differential expression levels seen among dermo resistant
families after 28 days of exposure (Proestou and Sullivan, 2020).
The concordant differential expression results between ours
and this previous study for C1q tumor necrosis factor genes
suggests additional studies should explore the function of these
genes in infection resistance. Finally, the significant but limited
overlap in genes showing differential methylation and differential
expression is a potential indicator of a limited influence of
changes in methylation on changes in expression.
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